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Abstract. We use the renormalization-group method to study the dynamics of the solid-on-soli 
model proposed by den Nijs for the preroughening transition. The implications of our resub 
for the spatial and temporal behaviour of crystal-vapour interfaces are discussed. 

The interface between crystals~and vacuums or between solids and fluids has been thoroughly 
studied in recent years (for a recent review see [I]). In low-enough temperatures, the 
atoms in the solid-vacuum interface arrange themselves to form a thermodynamically stable 
ordered structure which has either a different order Gom the bulk or the same order as the 
bulk. When the interfacial structure has a different order, the interfacial structure is called a 
reconstructed structure, while when the interfacial structure has the same order, it is called 
an ordered flat structure. As the temperature is raised, the surface structures may lose their 
order, and exhibit an equilibrium order-disorder phase transition, caUed the reconstruction 
transition [Z, 31. The disordered interface above the reconstruction transition may still have 
finite interfacial thickness. Thus it is called the disordered flat interface. Upon further 
heating, another surface phase transition can occur from the disordered flat interface to the 
rough interface. This transition is called the roughening transition (for a recent review see 
[4]). Above this roughening transition temperature, the interfacial thickness diverges, and 
specific crystal facets no longer exist. 

The characteristics of the reconstruction and roughening transitions have been much 
studied separately, and have been found to be distinct from those of the bulk phase transition. 
For example, the interface of opposite-sign domains of the Ising model undergoes the 
roughening transition at a lower temperature than that of the bulk phase transition, the Curie 
temperature, and belongs to a different universality class, the Kosterlim-Thouless transition 
[SI. On the other hand, the reconstruction transition can often be found in the [I IO] surfaces 
of FCC noble-metal single crystals [Z], and has been studied separately from the roughening 
transition. Recently, phenomenological models to understand both the reconstruction and 
roughening transitions simultaneously have been proposed [7,8]. Among them, the restricted 
solid-ou-solid (Rsos)  model proposed by den Nijs generates complicated surface phase 
structure which contains the ordered flat, the reconstructed, the disordered flat, and the 
rough surface structures [3]. The complicated surface structure results from the competing 
effects of the ferromagnetic interactions of the nearest neighbours and antiferromagnetic 
interactions of further nearest neigbours [3,9]. 

In the phase diagram proposed by den Nijs [3], the disordered flat phase is an 
intermediate phase of the reconstructed and rough surface phases or of the ordered fiat and 
rough surface phases. In this phase, the surface contains an may of steps with positional 
disorder and long-range updown-up-down order as shown in figure 1. Accordingly the 
average height is shifted by a half from that of the,ordered flat interface., The transition 
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from the ordered flat to the disordered flat phase is called the preroughening transition. The 
preroughening transition includes many interesting physical features and has been studied 
using the r enorma l ion  group (RG) method, and low-temperature series expansion [3,9]. 
The RG method is based on the continuum sineGordon Hamiltonian, which is an extension 
of the one for the roughening transition. The Hamiltonian of the sine-ciordon model for 
the preroughening transition can be written as 

K Park and B Kahn8 

‘H = dZr[iy(V@(r))2 - VI cos(Z?r@(r)) - V2cos(4z@(r))] (1) J 
where @(x) represents the height of the interface at the position r on the substrate. When 
Vz = 0, the above Hamiltonian reduces to that for the roughening transition. 

v2 
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I 

Figure 2. RG Bow diagram of the roughening and preroughening transitions with n = n T / y .  

RG analysis of the static Hamiltonian equation (1) has been performed [3,9]. The 
essential features of the RG analysis may be understood by examination of the flow diagram 
shown in fiewe 2; depending on the choice of initial conditions on the critical surface, one 
finds that two, one or none of the fugacities flow to zero. If both do so, then one has no 
restraining potential for the surface, and it becomes rough. Conversely, if only one of the 
fugacities is finite, the phase kprerough, and if both of the fugacities are finite, the phase 
is flat. 

However, the dynamics of the preroughening transition has not yet been studied, which is 
the purpose of this paper. Here we shall perform dynamic RG analysis for the preroughening 
transition. In general, the dynamic equation for reaching a stable equilibrium state can be 
derived from the static Hamiltonian via the Langevin equation [lo], 



Dynamics of the preroughening transition 2897 

with thermal noise R ( r ,  t )  and friction coefficient q ,  Thus the dynamic equation for the 
preroughening transition after redefining the coefficients is 

v-~ t ,  - - yV24 - ZrV,  sin(Zxq5) - 4x Vz sin(4xq4) + R ( r ,  t )  (3) at 

where R is a random noise force with a white spectrum 

(Rk(t)&(t ' ) )  = G&(t - r'). (4) 

In this paper, we will .use the perturbative RG method introduced by Nozikres and 
Gallet to perform the dynamic RG analysis [ll]. Originally the method was applied to 
the problem of the dynamics of the roughening transition [12], and detailed calculations 
have been presented [ll]. Since the calculations for the preroughening are similar to those 
for the roughening transition, we will only present the essential steps of calculations for 
the dynamic RG transformations here. First, we split the random force R into two parts, 
R = R + SR, which are statistically independent. Here we may regard SR as the effect 
of the short-wavelength, rapidly varying degrees of freedom left out of the coarse-gained 
description. Thus we shall take an average over SR. For comparison, the standard RG 
transformation is canied out by integrating out the field @(k) in Ajb < k c A, while 
the current method uses the random force R(k)  for integrating 'out. Accordingly the noise 
spectrum is readily divided into Gk = ck + 6Gk, contributed by 8 and SR respectively. 
Moreover we obtain the averaged height 4 = ~ ( @ ( R + S R ) ) ~ R  by performing apartial average 
over 6R,  and define 84 4 - 4. 

Then the dynamic equations of 6 and 84 are 

' (sa) 
q- a6 = y v 2 $  -22~1(sin(;??r$+~n84)) -4ic~z(sin(4x$+4n~#))  + r T  

at 

- 4nV~[sin(4n$ +4x64) - (sin(4xd +4xS@))] +SR. (5b) 

We first solve for 84 by iterating and expanding in powers of VI and V2. In the zeroth 
order, 

S@")(r, t )  = d2r'dt'Xo(r - r', t - t')SR(r', t') (6) 

where xo is the solution of ihe equation for the case of V, = 0, V2 = 0, and R = 0 in 
equation (3), that is q a d / a t  = yV2$. Explicitly, the solution is 

s 
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Next combining the results, equations (6) and (S), and inserting 6@ = 6@@) + 
equation @a), we obtain the following equation, up to the order O(Vf, VlVz, V:), 

q- = y v Z $  - Z Z V ~  sin(2x4) -~41rVz sin(4mj) + ri 
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into 

a& 
a t  

+8n3v~/d2r'dt',yo(r -r', t -t')[sin(k$(r) +2z$(r'))(e-""(+'." - 1) 

- sin(za&r).- ~ Z W ) ) ( ~ ~ ~ E @ . ~ )  - 111 

+ 16n3v1 vz / dzr'dt',yo(r-r', t-t')[~in(k4(r)+4n4(r'))(e-"~E(+',~) - 1) 

- sin(znQ;(r) - 4~r$(r'))(e~~'8@*" - I)] 

+32n3 vz / d'r' dt' xo(r-r', t -t')[sin(4n$(r) +2n~(r'))(e-4n6~(+'~7) - 1) 

- sin(4&) - 2r6~rf))(e4nsg(~~r) - I)] 

+@n3v2 /d'r'dt'xo(r -r', t-t')[sin(4a&(r) +4n4(r'))(e-8"6"7r) - 1) 

(9) - sin(4n$(r) - 4~4(r'))(e8~~8@,') - I)] 

6g(p, T) = ( k y / T ) ( 8 $ " ( r ,  t)S@(')(r', t')) 

where VI = V,e-'68(0,0), vz = Vze-4n6~(0,0), with n = x T / y ,  and 

(10) 

with p = r - r' and T = I - t'. In order to obtain the renormalized corrections of y and q, 
we make the following replacement, 

sin{zn@(r) - k @ ( r ' ) )  --f k(@ - @')(cos~K(@ - @')) 
(11) = - k(@ - @')e-M(O.d  

where 

1 1  
h ( p ,  r )  = 1 a Z[I - ~ o ( k p ) e - ~ ~ ~ ~ ' ~ ]  (12) 

under the assumption of the sharp cut-off, e(l - n). The function, h ( p ,  T), can also be 
obtained by using Kadanoff's operator algebra formalism [13]. The Taylor expansion of 
4 - @ generates 0'4 and a @ / a t  terms, which contribute to the renormalizations of y and 
q respectively. In equation (9), we discarded the irrelevant harmonic terms contributing to 
higher harmonics. After rescaling $ = p(1-6) and = k/(l -c),  we obtain the following 
RG recursion relations, 

dVl/ds=(2-n)Vl (13) 

dVz/d€ (2 - 4n) Vz (14) 

dy/ds = (2x4V:/y)A(n) + (327r4V;/y)A(4n) 

dq/ds = (8z4Vfq/y2)B(n) + (128ir4V~q/y2)B(4n). 

(15) 

(16) 
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In the above equations, A(n) and B(n) are defined as 

and 

where we have set x = yr /qp2.  and 

The numerical behaviour of the functions A(n) and B(n) was described [ll], and the values 
at the fixed point are A(2) = 0.398 and B(2) = 0.234. 

The recursion relations for the preroughening transition are very similar to those for the 
roughening transition, but including a higher harmonic term. That is, when V2 = 0, the 
above recursion relations reduce to those for the roughening transition exactly. The flow 
diagram for the parameters V, and V2 is depicted in figure 2. Depending on the choice of 
initial conditions on the critical snrface, two, one or none of the .fugacities flow to zero. If 
both do so, then there is no restraining potential for the surface, so that the the surface is 
unpinned, which means the surface is rough. While if VI = 0 and V2 # 0, then a pinning- 
unpinning transition partially occurs. Thus the surface is prerough. If both parameters are 
non-zero, then the surface is flat. Therefore the roughening transition occurs at n = 2 and 

In the disordered flat phase, where i c n < 2. VI decreases under RG transformations, 
so that the fugacity V2 is irrelevant. Thus within the RG scheme, the study of the dynamics 
in the disordered flat phase is very similar to the one obtained for the roughening transition 
below the roughening temperature. On the other hand, the fugacity VI blows up under 
infiiite RG hansformations, so that the expansion in powers of VI in the RG analysis might 
be meaningless. But in this case, the sfop-RG transformation must be applied. The RG 
transformation must stop at finite iterations when the length scale is comparable to the 
correlation length ( which is known to be finite below the roughening temperature. For this 
case, VI and V2 remain finite, and they are still small. We checked numerically that, even 
in the presence of V2, y / q  will behave similarly under RG transformations to the case of 
V2 = 0. Since the fugacities remi& small enough, we may adapt the well known result for 
the height-height correlation above the roughening @ansition that w2 ((4(r, t),+(O, t ) ) 2 )  
scales as Inr. In fact, w2 is equivalent to the function H(r, t) in equation (20). At an early 
stage, the growth of the interface is driven by nucleation of small seeds.. The length r 
corresponds to the typical size of seeds, which increases as - i/t. Hence the height-height 
fluctuation w2 scales as - Int. This behaviour stops at the characteristic time t* - c2. A 
similar result was obtained by stochastic numerical simulations by Devillard [14], where 
the correlation length t is replaced by the system size L,,because 6 > L. 

Beyond the characteristic timet*, the separation between isolated seeds becomes closer, 
and coalescence may occur. In this regime, it was shown by numerical simulation [14] that 

the preroughening transition occurs at’n = i. . .  
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the fluctuation w2 decreases, and it saturates to a size-independent constant value. However, 
beyond the characteristic time t*, RG analysis breaks down, because VI becomes so large 
that expansion in powers of Vl does not make sense. However, in the long-time limit, it is 
obvious that the fluctuation w2 converges to a constant value, because the interface is flat 
below the roughening temperature. Since the value of the fluctuation at t* increases with 
system size, and the saturated value is independent of system size, we may expect that the 
fluctuation will decrease after a characteristic time, and it will then be saturated. Next when 
an external force is applied, we might say by using the result for the roughening transition 
[ l l ]  that A p  i y / L 2 ,  the surface grows as if the force were zero, and for A p  > y /L2 ,  
the renormalization of y and q stops, and the interface is rough. 

In conclusion, we have studied the dynaimcs of the disordered-flat structure by applying 
the dynamic renormalization group to the Langevin-type equation derived from the sine- 
Gordon Hamiltonian. We found that the roughening transition occurs at n = r T / y  = 2, 
and the preroughening transition at n = i. The preroughening transition is driven by 
the second harmonic term of the lattice pinning potentials. The renormalized parameters 
of surface tension and friction due to the second harmonics are described by the same 
functions A(n) and B(n) as those used in the roughening transition. The second fugacity 
converges to zero under infinite RG transformations. Since the first fugacity blows up under 
RG transformations, we must apply the stop-RG transformation. In this case, the first and 
the second fugacities remain finite. Even in the presence of the second fugacity, the nature 
of the RG transformation does not change from the case of the absence of VZ. Thus we have 
found that the height-height correlation function grows as In t for t e Lz, and it saturates to 
its equilibrium value in the long-time limit. For the applied force, A p  < y/L2 the surface 
grows, as if the'force were zero. 
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